甘肃省科学技术奖申报项目公示

项目名称	质量数 40~70 缺中子核区短寿命原子核质量的高精度				
	测量				
申报奖种	自然科学奖				
完成单位	中国科学院近代物理研究所				
完成人	徐瑚珊,张玉虎,王猛,涂小林,原有进				
项目简介(限500字)					

(自然科学奖项目所属科学技术领域、主要内容及发现点、科学价值、同行引用评价等。)

项目所属: 物理学科-实验核物理。

主要内容:基于兰州重离子加速器装置建成了先进的等时性质谱术,测量了一批短寿命原子核的质量,研究了核结构及核天体物理中的前沿科学问题,取得重要成果并在国际上产生重大影响。

发现点及科学价值:

- 1. 精确测量了 18 个寿命在百毫秒量级的原子核质量,最高相对精度达到 8×10⁻⁸,为国际同类装置最高水平,其结果为核结构及核天体物理前沿科学问题研究提供高精度数据。
- 2. 确定了 As 同位素质子滴线位置; 首次在 pf 壳层系统检验了原子核的同位旋对称性,发现 A=53、T=3/2 同位旋多重态质量公式失效;质疑了鉴别同位旋相似态的传统方法并提出新思路。此发现点开辟了一个核结构研究新方向。
- 3. 发现 ⁶⁴Ge 并不是 X 射线暴核合成过程中的"等待点"核、否定了理论预言的 Ca-Sc 循环。澄清了困扰学界对"等待点"和"反应循环"的认知,消除 X 射线暴研究中的不确定性。

同行引用评价: 5 篇代表作共被引 302 次, 多次在国际学术会

议上做邀请报告,为质谱 100 周年、原子核集体模型获诺奖 40 周年纪念文集撰写综述性评论文章。2014 年中科院组织国际评估被评为"国际领先"。2018 年入选国家"伟大的变革—庆祝改革开放 40 周年大型展览";入选中国科学院改革开放四十年 40 项标志性重大科技成果。

完成人对项目主要贡献

姓名	排名	职称	单位	主要贡献		
徐瑚珊	1	研究员	中国科	总体负责本项目,组建了研究团		
			学院近	队,制定研究计划和科学目标,		
			代物理	协调各部门的合作,带领团队在		
			研究所	CSR 上建立了质量测量方法并完		
				善了测量装置,完成了质量测量		
				实验并得到核质量数据,利用质		
				量数据研究了相关的核结构、核		
				天体物理物理问题。		
张玉虎	2	研究员	中国科	先后与徐瑚珊研究员、王猛研究		
			学院近	员一起全面负责短寿命原子核		
			代物理	质量测量团队的工作,包括研究		
			研究所	计划和具体研究目标的制定、课		
				题申请、实验数据的分析和发表		
				论文等,侧重于核结构及核天体		
				物理中与核质量实验数据相关		
				的物理问题研究。		
王猛	3	研究员	中国科	主持等时性质量测量的实验工		
			学院近	作,负责探测装置的升级和实验		
			代物理	方案的设计,发展了数据快速分		
			研究所	析、储存环工作点实时监测、储		

		1	T	
				存环内狭缝、磁场晃动修正等一
				系列新技术和新方法,研究了核
				质量实验数据相关的核结构、核
				天体物理问题。
涂小林	4	研究员	中国科	制作了高性能飞行时间探测器,
			学院近	参加实验并主持完成了本项目
			代物理	中前四轮的数据分析,建立了新
			研究所	的数据分析方法以消除磁场晃
				动对测量结果的影响,研究了相
				关的物理问题。
原有进	5	研究员	中国科	负责 CSRe 储存环的等时性设置
			学院近	和调束,发展了储存环工作点监
			代物理	测和精细调节方法,保障了实验
			研究所	的平稳开展。对实验数据分析方
				法的发展也做出重要贡献。